Monitoring agricultural water productivity: a contribution to SDG - Target 6.4

Jippe Hoogeveen Food and Agriculture Organization

WATER

Proposed Sustainable Development Goal 6

Ensure availability and sustainable management of water and sanitation for all

Targets:

- 6.1 by 2030, achieve universal access to drinking water for all
- 6.2 by 2030, achieve access to sanitation and hygiene for all
- 6.3 by 2030, improve water quality by reducing pollution, halving the proportion of untreated wastewater, and increasing recycling and safe reuse
- 6.4 by 2030, substantially increase water-use efficiency across all sectors and ensure sustainable withdrawals and supply of freshwater to address water scarcity, and substantially reduce the number of people suffering from water scarcity
- 6.5 by 2030 implement integrated water resources management at all levels
- 6.6 by 2020 protect and restore water-related ecosystems

Related targets

2.1 by 2030 end hunger and ensure access by all people to safe, nutritious and sufficient food all year round

2.3 by 2030 double the agricultural productivity and the incomes of small-scale food producers through equal access to land, other productive resources and inputs [...]

7.1 by 2030 ensure universal access to affordable, reliable, and modern energy services

Elements of Target 6.4

Indicators proposed for 6.4

Developed by the UN-Water Task Team on Target 6-4 as part of the GEMI initiative "Integrated monitoring of water and sanitation related SDG targets"

Multi-sector Water Efficiency (% change)

Industrial water productivity (USD/m³) Energy water productivity (MWH/m³)

3**WAT**

Level of Water Stress (change in water withdrawal as percentage of renewable water) Number of people living in areas/basins affected by water scarcity (work in progress)

Why focus agricultural water productivity?

Source: Shiklomanov 2000.

&WATER

Why monitor agricultural water productivity?

- Agriculture is responsible for 70% of all water withdrawals
- Agriculture is responsible for 90% of all water consumed from these water withdrawals
- In 2050 we need 60% extra food globally
- In 2050 we need 100% extra food in developing countries
- 70% of the extra food needs to come from yield increases
- Irrigation will remain very important for food production

Measuring agricultural productivity

- In the past:
 - land productivity only (see target 2.3)
- As resources become scarce, need to have a more comprehensive approach:
 - Land: kg/ha; \$\$/ha
 - Water: kg/m3; \$\$/m3
 - Energy: kg/J; m3/J
 - Labour: kg/md; \$\$/md
 - etc..

The FAO/UNESCO-IHE/IWMI initiative

ND

Project components

- 1. Database
- 2. Water and land productivity assessment
- 3. Water accounting
- 4. Capacity development

Project components

Database
I. Continental level
II. Country and river basin level
III. Irrigation scheme / landscape level

Project components

Database

- Land use
 - Irrigated vs rainfed
 - II Major crops
 - III Most crops
- Biomass
- Harvest Index
- Reference evapotranspiration
- Actual evapotranspiration
- Precipitation

ર**WAT**

Carbon uptake (from biomass production)

Capacity development

Assess differences in water productivity in the irrigation scheme
Assess level of water services in irrigation scheme
Increase service levels and water productivity through modernization of irrigation schemes
Identify farmer communities or farmers with the best on-farm practices
Prepare lists of good practices
Benchmark land and water productivity in each agro-ecological zone
Monitoring total food production in agro-ecological zones
Planning of rainfed and irrigated cropped areas
Planning and evaluation of total water withdrawals, consumptive use and return flows in
cropped land
Monitoring of lawful water use
Monitor global / regional water productivity
Contribute to early warning systems

Conclusions

- New approach, new technologies
- Contribute to key elements of SDG monitoring
- Offers links between major SDG targets
- Independent: comparable, replicable
- Multi-scale

3.WA

thank you

